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The problem of determining the steady axially symmetrical motion induced by a 
sphere rotating with constant angular velocity about a diameter in an incompressible 
viscous fluid which is a t  rest a t  large distances from it is considered. The basic inde- 
pendent variables are the polar co-ordinates ( r ,  6 )  in a plane through the axis of rota- 
tion and with origin a t  the centre of the sphere. The equations of motion are reduced to 
three sets of nonlinear second-order ordinary differential equations in the radial 
variable by expanding the flow variables as series of orthogonal Gegenbauer functions 
with argument p = cos 8. Numerical solutions of the finite set of equations obtained 
by truncating the series after a given number of terms are obtained. The calculations 
are carried out for Reynolds numbers in the range R = 1 to R = 100, and the results 
are compared with various other theoretical results and with experimental obser- 
vations. 

The torque exerted by the fluid on the sphere is found to be in good agreement 
with theory a t  low Reynolds numbers and appears to tend towards the results of 
steady boundary-layer theory for increasing Reynolds number. There is excellent 
agreement with experimental results over the range considered. A region of inflow 
to the sphere near the poles is balanced by a region of outflow near the equator and 
as the Reynolds number increases the inflow region increases and the region of out- 
flow becomes narrower. The radial velocity increases with Reynolds number a t  the 
equator, indicating the formation of a radial jet over the narrowing region of outflow. 
There is no evidence of any separation of the flow from the surface of the sphere near 
the equator over the range of Reynolds numbers considered. 

1. Introduction 
The flow due to a sphere rotating with uniform angular velocity about a diameter 

in a fluid at rest is of intrinsic interest in the fields of meteorology and astrophysics, 
amongst others, and has received attention both theoretically and experimentally. 
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Stokes (1845) and Lamb (1932) considered the problem of a slowlyrotating sphere. Here 
the Reynolds number is small. The Reynolds number can be defined by R = u2wo/v, 
where u is the radius of the sphere, wo its angular velocity and v the coefficient of 
kinematic viscosity. Stokes gave the first approximation to the flow and remarked 
that the sphere behaves like a centrifugal fan causing an inflow to the sphere in the 
direction of the polar axis and an outflow parallel to the equatorial plane. Bickley 
(1938) calculated the first-order perturbation in powers of the Reynolds number and 
found that for small values of R the transition from inflow at the poles to outflow near 
the equator takes place at an angle 0 = 54*5", where (r ,  8)  are polar co-ordinates in a 
plane through the polar axis with origin at  the centre of the sphere and the initial 
line coinciding with the polar axis. Further approximations to the solution in powers 
of R were obtained by Collins (1955), Thomas & Walters (1964) and Ovseenko 
(1963) and the series has subsequently been extended to eight terms by Takagi 
(1977), giving the most recent contribution to the low Reynolds number end of the 
theory. 

For large values of R, Howarth (1951) was the first to discuss the laminar boundary 
layer on a rotating sphere. Howarth showed that in the vicinity of the poles the 
boundary-layer equations reduce to the von KBrmBn equations governing the motion 
of an infinite rotating disk. He obtained an approximate solution of the boundary- 
layer momentum integral equations by the von K&rm&n-Pohlhausen method. The 
problem has subsequently been studied on the basis of boundary-layer theory by 
Nigam (1954), Stewartson (1958), Fox (1964), Banks (1965, 1976), Manohar (1967) 
and Singh (1970). A theory which gives the second-order correction to boundary- 
layer theory has been given by Brison & Mathieu (1973). Experimental studies have 
been given by Kobashi (1957), Bowden & Lord (1963), Kreith et al. (1963) and Sawatzki 
(1970). In  this latter paper measured values of the torque required to rotate the sphere 
over the range 2 < R < 1.5 x lo6 were presented together with velocity profiles in 
both the laminar and turbulent boundary layers. A review of much of the literature 
prior to that time is given. 

The present paper considers the steady axially symmetrical flow due to a rotating 
sphere in a fluid at rest by the method of series truncation. Early details of this method 
were given by Van Dyke (1964, 1965). In  the present context we are interested in 
applications to problems involving spherical geometry. Dennis & Walker (197 1) 
considered steady flow past a sphere by this method agd Dennis, Walker & Hudson 
(1973) similarly considered heat transfer from a sphere by forced convection. Brabston 
& Keller (1975) used the method to study flow past a spherical gas bubble. Munson & 
Joseph (1971) and more recently Dennis & Singh (1978) applied similar techniques to 
calculate the flow between two rotating spheres. A comparable method to that used 
by Dennis & Singh is used in the present paper. Spherical polar co-ordinates (r, 8, q5)  
are used. The motion is independent of q5 and the Navier-Stokes equations are ex- 
pressed as three simultaneous second-order partial differential equations governing 
the stream function, angular velocity and vorticity. These dependent variables are 
expressed as series of orthogonal Gegenbauer functions with argument ,u = cos 8, the 
coefficients of the Gegenbauer functions being functions of the radial variable. Sub- 
stitution in the Navier-Stokes equations yields three sets of simultaneous ordinary 
differential equations of the second order which must be solved as functions of the 
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radial variable. The equations are truncated by setting to zero all terms in the series 
after a certain stage and the resulting finite sets of equations are solved numerically. 

Although the principle of the method is quite similar to that employed by Dennis & 
Singh (1978), there is one important difference. I n  the flow between two rotating 
spheres the range of the radial variable is finite, whereas here it is infinite. Dennis & 
Singh adopted the modified radial variable ln(r/a) and the same variable could be 
used here. However, if either ln(r)  or r itself is used as a variable the problem of 
approximating the boundary conditions a t  large distance by boundary conditions at 
finite values of r has to be considered. Thus in the present paper the variable 5 = a/r  
is used to make the range of the computations finite. Another reason for adopting this 
variable is that  the perturbation series for small R are polynomials of low degree in 5 
with terms involving In ( E )  eventually entering in higher approximations together 
with increasingly higher powers of 5. Thus finite-difference approximations based on 
polynomials in the variable < are certain to be satisfactory for the lower values of R. 
The ordinary differential equations are therefore formulated in terms of 5 and boun- 
dary conditions are specified at both ends of the range, 5 = 0 and 5 = 1. Specialized 
techniques are employed for solving some of the differential equations and, in particu- 
lar, an integral involving the vorticity is used to calculate values of the vorticity on 
the sphere. This method was employed by Dennis & Singh (1978) but the principle of 
the method goes back to papers by Dennis & Chang (1969a, b, 1970). 

Numerical solutions are presented for values of the Reynolds number R = 1, 10,20, 
5Q and 100. For R < 10, the torque and velocity field characteristics are in good 
agreement with the series solutions of Collins (19551, Ovseenko (1963) and Takagi 
(1977)) while for 10 < R < 100 the calculated values of the torque agree well with 
the experimental measurements of Sawatzki ( 1  970) and there is a general tendency 
in the direction of the boundary-layer results of Howarth (1951) and Banks (1976) 
for this quantity. The transverse and azimuthal velocity components for R = 100 
are found to compare reasonably, bearing in mind that the full boundary-layer charac- 
teristics have not yet developed, with those measured by Sawatzki (1970) and the 
theoretical boundary-layer results of Banks (1965). The radial velocity a t  the equator 
is found to grow with Reynolds number in a very similar manner to the growth with 
time found for this quantity by Dennis & Ingham (1979) in the case of the unsteady 
boundary layer on a sphere which is suddenly started rotating from rest. This seems 
to be a consequence of the fact that as the Reynolds number increases the region of 
inflow to the sphere increases and the region of outflow forms a narrowing band near 
the equator of the sphere due to the collision of the boundary layers. A recent paper by 
Smith & Duck (1 977) suggests that, in situations involving colliding boundary layers 
such as in the present problem, there is separation from the wall to form a recirculating 
region whose dimensions are of order R-i% near the equator. There is no evidence of 
such a region forming over the range of R considered in the present solutions. 

2. Basic equations and analysis 
If spherical polar co-ordinates ( r , O , $ )  are taken with origin a t  the centre of the 

sphere and 0 = 0 the axis of rotation the motion is independent of the azimuthal 
angle 9. The sphere rotates with angular velocity wo and we can express the motion 
in terms of dimensionless velocity components (u, v, 20) in the directions of r,  8 and q5, 

9'2 
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obtained by dividing the dimensional components (u*, v*, w*) by aw,. The dimen- 
sional components can be expressed in terms of the stream function $* and the func- 
tion a* in the form 

If we now introduce a dimensionless stream function $ and dimensionless function rR 
given by 

and put E = a/r  we obtain for the dimensionless velocity components 

$* = a3w0$, a* = a2w,Q (2) 

The Navier-Stokes equations for the motion are easily found to be 

where 

The boundary conditions on the surface of the sphere are that 

1(. = a$,fag = 0, SZ = sin26 when E = 1. (7) 

The fluid a t  large distances from the sphere is assumed to be at rest so that all the 
velocity components must vanish as 6 -+ 0. The appropriate forms of the boundary 
conditions for SZ, $and gas g -+ 0 will be considered shortly. The motion is symmetrical 
about 0 = &r and hence the region of integration may be taken as 

o < g < 1 ,  O < O < & r  

subject to the conditions that for all t in the given range 

L! = $ =  c =  0 when 6 =  0, aQ,/aO= $ =  g =  0 when 8 =  47~. 
In  view of the conditions (8) we may assume the expansions 

W 

= 2 &nCU)fn(t) ,  
n = l  
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where In(p) are the Gegenbauer functions of argument p = cos8 (Sampson 1891; 
Happel & Brenner 1965). These functions form a complete orthogonal set in the 
range p = - 1 to p = + 1 and the terms in the expansions (9)-( 11)  reflect the correct 
symmetry properties of the corresponding functions over this range. Substitution of 
(9)-(11) in the equations (4)-(6) gives rise to infinite sets of ordinary differential 
equations similar to those given by Dennis & Singh (1978). The least complicated of 
these sets is that derived from ( 5 ) ,  which gives 

(2gg + 2EgA - 2n(2n + 1 )  gn = - g-2hn, (12)  

where the primes denote differentiation with regard to (. This set of equations is 
obtained by changing variables from 0 t o p  in (5), substituting (10) and ( 1  1 )  and making 
use of the orthogonality properties of the functions In&). 

By the use of similar procedures, ( 4 )  and ( 6 )  may be reduced to the respective sets 
of equations 

( " f ; l+2( fA-2n(2n- l ) fn  = C2Rn, (13)  

t2hi + 26hhl, - 2n(2n + 1 )  h, = E2Sn, (14) 

where the quantities R,([) and S,(E) are nonlinear combinations of the various func- 
tions defined by 

m m  
I?,(<) = 2 n ( 2 n - 1 ) ( 4 n - l ) R  { L ( 2 Z - 1 , 2 n - 1 , 2 m ) f ~ g m  

1=1 m=l 

- L ( 2 m ,  2n -  I ,  21- I ) f , g k } ,  (15) 
m w  

AS,(() = 2 n ( 2 n + 1 ) ( 4 n + l ) R  [L(2m,2n,2Z)g,h~-L(2Z,2n,2m)g;hm 
1=1 m = l  

+ {2E-lL(2m, 2n, 21) gr - M(21,2m,  2n )  9;) hm 

- {2[-1L(21- 1 ,2n,  2 m  - 1)h - M (  22 - 1 , 2 m  - 1 ,2n)  f ;} f,]. (16)  

The quantities L(1, m, n) and M(1, m, n)  which appear in (15) and (16)  are integrals 
involving products of Gegenbauer functions and derived functions. They are defined 
by 

where the prime in (1 7 )  denotes differentiation with respect to p. It has been shown by 
Dennis & Singh (1978) that these quantities can be expressed in terms of the Wigner 
3-j symbols in the form 

(I : :)(5 : :)' L(Z, m, n) = [Zm(Z + 1)  (m + i)]4 

Details of the Wigner 3-j symbols are given by Rotenberg et al. (1959) and Talman 
(1968). 
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The range of the solutions of the sets of ordinary differential equations (12)-(14) 
is $?om f = 0 to E = 1, where the point k = 0 corresponds to infinite radial distance 
from the sphere. The boundary conditions follow from (7) together with the condition 
that the velocity components must vanish as r -t co, i.e. as f -t 0. The boundary 
conditions for (12) are 

(21) g,(l) = gh(1) = 0. 

These are sufficient conditions to determine the set of functions g,(E) from the set of 
second-order differential equations. No explicit condition is known for g,(O) since the 
form of +((, 0)  is not known precisely as E -+ 0 except in the case of the perturbation 
theory valid for small values of R. In  the present technique of solution the necessity 
of assuming a condition for g,(O) is avoided by devising a special integration procedure 
in which the set of equations (12) is solved by step-by-step methods. This is a special 
feature of the present approach to the problem in which it is not necessary to assume 
an explicit condition for + as r + co. The boundary conditions for (13) are that 

fn (0 )  = 0, fn(1) = 28n.1 (22) 

if it  is assumed that R -t 0 as f -+ 0. The quantity 8,,1 in the second of the conditions 
(22) is the Kronecker delta. The condition that i2 -t 0 as t -+ 0 is obviousIy sufficient 
for w to vanish as 6 + 0 from (3) but it is not a necessary condition. However, it  is 
completely consistent with the solution of Stokes (1845) and is satisfied in all the per- 
turbation solutions in powers of R including the solution consisting of eight terms 
given by Takagi (1977), so i t  is assumed to be valid in the present treatment. 

The function [ ( E ,  8) must vanish as [ -+ 0 but is not known on the surface of the 
sphere ( = 1 and must be calculated as part of the solution. The boundary conditions 
for the set of equations (14) may be expressed as 

h,(O) = 0, h,( 1)  = a,. (23) 

The set of constants a, must be determined and a set of conditions which may be used 
to do this can be derived from (12). For convenience in subsequent manipulation we 
make the transformations 

The set of equations (12) becomes 

E2Gg + EGA - k2G, = @r,(E), 

where k = 2n + 4. The boundary conditions for G,( f )  are 

C,(i) = GL(1) = 0. (26) 

We now multiply (25) by f k - l  and integrate both sides with respect to 6 from 6 = 0 to 
E = 1. After some integration by parts of the terms on the left side and then returning 
to the original variable g,(E) it  is found that 

1 

0 
[t2,+1 { t g A < t )  - 2ng,(t)>1; = 1 62% rn( t )  dt. (27) 



The steadyjow due to a rotating sphere 263 

The quantity on the left-hand side of (27) vanishes when < = 1 by (21) and it can also 
be shown to vanish as < -+ 0. The velocity components (3) must vanish as [ -+ 0 and 
if we substitute in the first two from (10) then 

E”,(<) + 07 E39M -+ 0 as 5 + 0. (28) 

The left-hand side of (27) therefore vanishes for all positive integer values of n and 
hence 

for all positive integer values of n. The use of this condition to determine the constants 
a, in (23) will be explained in the next section. 

The basic problem is now to solve the sets of ordinary differential equations (12)- 
(14) subject to the conditions (21)-(23), with (29) employed to calculate the unknown 
values of a,. The use of (29) is not the only possible procedure for calculating the 
constants a, but it is appropriate in the present method, since it is closely linked to 
the solution of (25) subject to (26) by means of step-by-step procedures. The satisfac- 
tion of (29) does in fact ensure that all the boundary conditions are satisfied correctly 
in the step-by-step integration. The details will be described in the next section, where 
the solution procedure will be outlined. In  the practical numerical integrations the 
computations must be limited to the determination of a finite number of terms in 
each of the series (9)-( 11) by truncation of the series. A truncation of order no is defined 
to be the process of setting to zero all terms with subscript greater than n, in (9)-( 1 1) 
and likewise in the sets of differential equations (12)-(14) and solving the resulting 
set of 3n0 second-order differential equations subject to their boundary conditions. 

3. Numerical methods 
For a given set of constants a, in (23) both of the sets of differential equations (13) 

and (14) are coupled sets of second-order differential equations with two-point 
boundary conditions. The coupling of the equations comes through the dependence of 
R,(() and S,(E) onf,(<) and h,(<) according to (15) and (16). The whole set of equations 
is solved by an iterative procedure, a t  any given stage of which each equation is con- 
sidered as a linear differential equation with variable coefficients which depend upon 
the current values of the various functions involved. We can write a typical equation 
of either one of the sets (13) and (14) as 

E2Y:I(5) + {25+ a n ( < ) } Y X )  + b,(E) Y,(E) = %&I. (30) 

Here y,(<) denotes eitherf,([) or h,(<). The function a,(<) is the coefficient of the term 
yA(5) which has been transferred to the left side of the appropriate equation from 
either R,([) or ,Sn(<). Similarly the term b,([) is made up of the coefficient of the term 
y,(<) already present on the left-hand side together with the coefficient of a term in 
y,(<) transferred from either R,(5) or AS,(<) as the case may be. Equation (30) can now 
be approximated by central differences in the form 

K2 - h{< + &a,(<)>] Y,(< - h) - { 2 F  - h2b,(<)} Y,(<) 

+ re + h{&. + *a,,(f)}I Y,(< + h )  - h2c,(E) = 0 (31) 
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at any typical point of a finite-difference grid, with grid size h, covering the range 
.$ = 0 to 6 = 1. For a given function y,(E) the set of equations (31 )  holds at all internal 
grid points and thus gives rise to a tridiagonal matrix associated with the values of 
y,([) a t  these points. The most recently available values of urn(<), b,([)  and c,(<) are 
used in the finite-difference equations (31) a t  the moment they are solved for a parti- 
cular function y,(t). The Gauss-Seidel iterative procedure is used to obtain the 
numerical solution. In  this way the whole set of equations of type (30 )  is solved for 
the functionsf,(E) and h,(Q for n = 1 ,2 ,  ..., no in an over-all iterative sequence until 
the functions converge to acceptable limits for all values of n. The details are similar 
to those described by Dennis & Singh (1978).  

The main features which need to be described in the present method are the use of 
the condition (29 )  and the numerical solution of (25 )  subject to (26 )  when (29 )  has been 
satisfied. If the range ( = 0 to E = 1 consists of j grid intervals of length h we can 
approximate the integral in (29)  by a quadrature formula and express the condition 
approximately as 

where the coefficients A?) depend upon the quadrature formula used and the factor 
E2, in the integrand has been absorbed in A T ) .  If the sum on the left-hand sideof (32 )  
when the term for i = j is omitted is denoted by Q, it follows that 

an = - r,( 1) = &,/A?), (33)  

which serves to determine a, from a knowledge of r , ( [ ) ,  and hence hn(<), at the grid 
points 6 = 0, h, 2h, . . . , 1 - h. In  principle any quadrature formula could be used but in 
practice there is a difficulty if a standard formula such as Simpson's rule is employed. 
The factor t2, in the integrand varies rapidly with if n is large whereas r,(C) itself 
may not vary rapidly with E.  Rapid variation of the integrand generally causes a 
loss in accuracy of the quadrature formula. In  the numerical work values of n up to 
n = 10 were used and to avoid the effect of the variation of E2" the following method of 
integration was used. 

= 0 to E = 1 is divided into pairs of intervals so that j is even in (32) .  
In  each pair of intervals rn(E) is approximated by a polynomial of the second degree, 
following the manner of Simpson's rule. Let El, c2, c3 denote successive grid points in 
a given pair of intervals and for convenience let the subscript on r,(() be suppressed. 
Then we assume 

The range 

T ( 6 )  = a + b(E - 52) + c(E - 6212 (34 )  

over the given pair of intervals, where 

a = r2, 2bh = r, - rl, 2ch2 = rl - 2r2 + r3 (35 )  

and r l ,  r2,  r3 correspond to values of r(E) a t  El, t2, 5,. It follows by a simple integration 
that 
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Hence by substitution of the results (35) the integral on the left-hand side of (36) 
may be evaluated over a typical pair of intervals and thus by summation over all 
such pairs of intervals the definite integral in (29) is obtained. The coefficient A?) 
which is needed in (33) is found by applying (36) to the pair of intervals for which 
f ,  = 1 - 2h, t2 = 1 - h, E3 = 1 and evaluating the coefficient of r (  1). It is thus found that 

{i-(1-2h)2n+1}+- 3h-2 { 1 - (1  - 2h)2n+2) 
2n+2 

+-{1-(1-2h)2n+3}]. 1 (37) 
2n+3 

It follows from this procedure that from grid values of rn(c) a t  all points other than 
f = 1 the satisfaction of (29) determines an approximation to r , ( l )  from (33) and 
then an approximation to r , ( t )  is known a t  all grid points. At this stage the numerical 
solution of ( 2 5 )  subject to (26) may be carried out. This will now be described briefly 
for a typical equation of the set ( 2 5 )  in which the subscript will be suppressed. The 
subscript will similarly be omitted from (26). We make the substitutions 

[GI-kG =p, [G'+kG = q, (38) 

[p' + kp = fb, Eq' - kq = @r 

and then by (25) p(c) and q(LJ satisfy 

(39) 

respectively. It follows from (26) that 

p(1) = q(1) = 0. (40)  

To obtain p we integrate the first of (39) in the direction of increasing f to get a step- 
by-step formula. Thus over the three successive points &, .&, E3 it follows using (36) 
that 

where = tl/tS. The quantities a, b and c are known in terms of r,, r2, r3 from (35) and 
hence p, can be calculated from p, and the numerical solution thus advanced two steps 
at  a time. 

In order to start the step-by-step procedure from f = 0 it may be observed that 
p(0) does not enter the calculation because in the integration of the first of (39) from 
E = 0 to any value of ( > 0 the term involving p(0) vanishes under the conditions on 
p(5)  implied by (28). This is reflected in (41) by the fact that /3 = 0 when El coincides 
with ( = 0. I n  this wayp(2h) can be calculated directly from data involving r(O), r(h) 
and r(2h) by means of (41). Moreover we can obtain p(h)  from the same data by 
integrating the first of (39) over a single step from c1 to g2 with c1 = 0. The result is 
similar to (41) except that p3 and c3 must be replaced by p2 and c2, respectively, and 
/3 replaced by y = (,/&. When = 0 the value of p(0) clearly does not enter the 
calculation since y = 0. Then p([) may subsequently be calculated a t  all grid points 
using (41). Since the condition (29) has been satisfied by summing the right-hand side 
of (36) for all pairs of intervals, the value of p( 1) must come out to be zero to be con- 
sistent with the first of (40). This provides a good check on the numerical procedures. 
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Finally, since p < 1 in (41) the step-by-step integration is very easily shown to be 
stable for all values of the grid size. 

The integration of the second of (39) by a similar step-by-step method which starts 
at  g = 0 is easily found to be unstable but since q( 1)  = 0 from (40) we can in this case 
find a stable method of integration by integrating backwards from = 1.  In this case 
it is found that over the same interval g = c1 to = t3 

where again p = kJgB. The formula (42) holds for all n > 1 but in the case n = I the 
last term must be changed to +&Inp. Since as before ,13 < 1 the formula (42), 
which provides a two-step formula to determine an approximate solution for q(<) 
starting from values of q(1 - h )  and q(l), is stable. In  order to start the integration 
we need a formula to determine q( 1 -h ) .  This can be obtained by a modification of 
(42) in which the integration takes place from f: = l2 to = t3. The appropriate for- 
mula is obtained by replacing q1 by q2 on the left-hand side and & and p by t2 and y ,  
respectively, on the right-hand side. Thus from a given approximation to r,(C) for a 
given value of n we can obtain approximations to p,([) and.q,(&) by methods which 
are stable for all values of n. It is found in the calculations that both of these appear 
to tend smoothly to definite limits as 6 -+ 0. From the definitions (38) and (24) it then 
follows that the conditions (28) are satisfied and hence that the velocity components 
calculated from (3) using (10) tend to zero as E -+ 0. 

The sequence of procedures used to obtain a numerical solution for a specified value 
of R and given values of h and no is substantially that given by Dennis & Singh (1978). 
From a given starting approximation to all functions and to the boundary conditions 
a, in (23) the set of equations (13) is solved for n = 1,2, . . . , no using the finite-difference 
analogue (31). This is followed by a similar solution of the set (14). Each set is solved 
by the Gauss-Seidel procedure; it is quite convenient to perform a fixed number of 
Gauss-Seidel iterations of (31) corresponding to each differential equation of the sets 
(13) and (14) rather than completely to solve the set of difference equations (31) to 
given accuracy before passing to the next equation. The next stage is the calculation 
of the constants a, from (33). When this has been performed the set of equations (25) 
is solved which leads to values of g,(E) and qk([)  to be used in the calculation of R,(f) 
and S,(Q from (15) and (16) the next time the sets of equations (13) and (14) are re- 
solved. This whole iterative procedure is repeated until eventually convergence is 
achieved. This is decided by the test 

Here E is an accuracy parameter and the superscripts refer to successive estimates 
during this over-all iterative procedure. 

In  the course of this iterative procedure the most sensitive feature tends to be the 
calculation of a, from (33) and it is necessary to employ an averaging process to 
determine the next iterate aLm+l) from 
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R h x loa n0 B X  104 0 

1 2.500 4 0.1 0.10 
10 1.250 5 0.1 0.10 
20 1.250 7 0.1 0.06 
50 0.625 10 0.1 0.05 

100 0.625 10 0.1 0.03 

TABLE 1. Parameters used in the solutions. 

where akm) is the previous iterate and aim+*) is the value obtained from (33) .  Thepara- 
meter w is a relaxation factor whose choice to some extent controls the rate of con- 
vergence of the whole process. Generally speaking w has to be reduced as R increases. 
One special situation which occurs during the integration of the equations (25)  must 
be mentioned. Although the functions h,(t) satisfy h,(O) =' 0, the functions r , ( t )  
defined by (24)  do not necessarily vanish as 6 + 0. This may be seen from the form 
of the solution for low Reynolds numbers which can be written 

fl(0 2E, S l ( t )  - @ ( I -  [I2, h ( 5 )  - R52(+ - 25) (45) 

as R + 0, where all functions having subscripts n > 1 are O(R2) a t  least. Thus 

in this approximation and is non-zero a t  6 = 0. Since the values of r,(O) enter the 
integration procedure in the general case, the problem is dealt with by assuming that 
r,(() can be approximated by a parabola over the two intervals from 6 = h to 5 = 3h 
and then extrapolating back to 6 = 0. This gives the approximation 

r,(O) = 3{r,(h) - r,(2h)} + r,(3h). (46) 

This formula was applied repeatedly during the iterative procedure to estimate r,(O) 
each time estimates of rvL(c) for ,$ + 0 became available following the solution of the 
set of equations (14) .  

The calculations were carried out over the range R = 1-100. The approximate 
solution (45) is a good starting assumption for the first truncation (no = 1 )  a t  small 
values of R and then a t  the higher values of R the final solution a t  the previous R 
can be used as an initial approximation. Truncations of higher order were carried 
out for a given value of R by using the results of the previous truncation as a starting 
assumption and in this way the number of terms in the solution was built up. For 
small values of R the convergence of the series (9)-( 11) is quite rapid and only a few 
terms are required to describe the properties of the solution quite accurately. As the 
Reynolds number is increased the number of terms required to give good accuracy also 
increases. Solutions were carried out for several values of no for each value of R and 
some judgement was applied as to the maximum value of no required. The solutions 
were terminated a t  R = 100, when a maximum value of no = 10 was necessary. The 
effect of varying the grid size h was also investigated a t  different values of R in the 
range considered. No significant changes in the solution occurred; in fact it is believed 
that h has been taken generally rather smaller than is necessary. Finally, it  was 
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R 1 2 10 

Tagaki ( 197 7) 1.00083 1.0033 1.0745 
Present 1.00087 1.0034 1.0736 

TABLE 2. Comparison of calculated values of RMI16n. 

necessary to decrease the parameter w in (44) as R was increased in order to secure 
convergence of the over-all iterative procedure. The parameters used for each value 
of R are shown in table 1; the values of no in this table are the largest values used. 

4. Calculated results 
In  the present section the results given are based on the most accurate solutions 

obtained. These correspond to the parameters given in table 1. We shall start by 
considering one property of the flow which can be compared with experimental 
measurements, namely the magnitude of the torque required to rotate the sphere 
with uniform angular velocity in a fluid a t  rest. This has been measured for a wide 
range of R by Sawatzki (1970). Theoretical values have also been given by Collins 
(1955) and Ovseenko (1963) in terms of series valid for small R and also by Takagi 
(1977). The torque is given by 

evaluated over the surface of the sphere, where rzr is the appropriate component of 
the stress tensor given by 

and p is the density of the fluid. If we substitute (48) in (47) with au*/ae = 0 on the 
surface of the sphere we obtain 

Then by substitution of the series (9) for i2 the integral in (49) can be evaluated in 
terms offl(g) and its derivative a t  t; = 1. If we introduce the dimensionless coefficient 
M = -T*/(&pa5w:) then it is found that, sincef,(l) = 2,  

The torque is thus dependent only on the derivative at  6 = 1 of&he first term of 
(9) and can be calculated quite accurately. The calculated value offi(1) is a function 
of the order no of the truncation, but this particular quantity converges very rapidly 
to a limit as no increases. Thus for Reynolds numbers up to 20 the value of M had 
converged to four significant figures by the time the truncation no = 4 was reached. 
At R = 50 it had reached a limit to the same accuracy at no = 7 and at  R = 100 the 
values were in agreement to four units in the fourth significant figure a t  no = 8 and 10. 
Some comparison of the present results with those of Takagi (1977) seems worthwhile 
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R M 0: R - + ( a f P ) ~ , l . s 3 o  - R - + ( ~ b & L , * - + n  

1 50-309 54.8 0.249 0-250 
10 5.399 58.0 0.645 0,812 
20 3.048 62.6 0.642 1.13 
50 1.554 69.4 0.583 1.57 

100 0.966 73.8 0.568 1.87 

TABLE 3. Calculated properties of the solutions. 

at  small values of R. Takagi gives the first eight terms of the expansion for low Rey- 
nolds number in the form 

RM 
16n 
- 

+0.000896 ( ~ ) 1 2 + 0 - 0 0 0 7 4  (:)l4+ ..., 

which we have used to calculate the torque in the range 1 < R < 10. The results are 
shown in table 2,  where they are compared with the present results obtained from our 
most accurate solutions. The agreement is extremely satisfactory bearing in mind that 
more terms of (51) are probably necessary at R = 10. 

The results for the torque over the range 1 < R d 100 are given in table 3 along 
with other properties of the solutions which will be described below. The calculated 
torque is compared in figure 1 with the experimental results of Sawatzki (1970) and 
various theoretical results. The curves labelled 1, 2 and 3 correspond to taking the 
sum of the first one, two and three terms respectively of (51), which give the earlier 
results of Lamb (1932), Thomas & Walters (1964), Collins (1955) andovseenko (1963). 
The curves labelled 4 and 5 give the results a t  high Reynolds number 

and 
(52) 

(53) 

derived from boundary-layer theory respectively by Banks (1  976) and Howarth 
(1951). The result (51) is not really effective in extending the results derived from the 
first three terms beyond R = 10 and the present results provide some extension of the 
comparison between experiment and theory in the intermediate range of R. If it  is 
supposed from boundary-layer theory that (52) and (53) give estimates of the leading 
term of an expansion as R --f 00 whose first two terms are given by 

M N aR-4 + bR-l, (54) 

we can estimate a and b by fitting (54) to the calculated values of M at any two large 
enough values of R. The results of making such estimates for the three pairs of values 
R = 10, 20; R = 20, 50; R = 50, 100 are shown in table 4. The inference from these 
results is that 

a s R + c o .  
M N 6*45R-4 + 32.1R-’ ( 5 5 )  
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~~ 

R 10 20 50 100 

a 5.32 6.44 6.45 
b 37.2 32.2 32.1 

TABLE 4. Estimation of the constants in equation (54). 

0.1 1 10 100 1000 
R 

FIQURE 1. Variation of the dimensionless torque M = - T*/(+pn50;) with R. 1, Lamb (1932); 
2, Thomas & Walters (1964); 3, Collins (1955) and Ovseenko (1963); 4, Banks (1976); 5, Howarth 
(1951); A, present calculations; 0, experimental measurements of Sawatzki (1970). 

The leading coefficient a = 6.45 in (55) is not only in very good agreement with the 
estimate (52) of Banks (1976) but also with the estimate a = 6.47 obtained by Dennis 
& Ingham (1979) as the limit for large enough time of the unsteady flow due to an 
impulsively started rotating sphere for large Reynolds number. ResuIts calcuIated 
from (55) give an excellent fit with the experimental results of figure 1 over the entire 
range 20 < R < 1000. No formula of the type (55) derived from second-order boun- 
dary-layer theory seems to be available, but Brison & Mathieu (1973) have considered 
this theory and present calculated results for M graphically over the range 

103 R G 105. 

These agree well with the experimental results of Sawatzki (1970) up to R = 4 x lo4. 
Since (55) also agrees well with the experimental observations over the range 

103 < R < 4 x 104, 

it is in good accord with the second-order theory of Brison & Mathieu. 
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fc) 

FIGURE 2. Streamlines of the motion for (a) R = 10; ( b )  R = 50; ( c )  R = 100. 
The values to the right of the streamlines are those of - loo@. 

Streamlines of the flow are shown in figure 2. The main feature is the expected 
inflow a t  the poles balanced by an outflow a t  the equator. The inflow changes to an 
outflow a t  an angle which depends on R but does not vary greatly with radial distance 
at fixed R. However, to be precise a definite radial distance has been chosen with 
which to associate a critical angle 6,.(R) a t  which the inflow changes to outflow, 
nan -1y that at which the radial velocity component along the equatorial radius 
6 = reaches its maximum value. This distance depends upon R and gives a measure 
of the thickness of the equatorial boundary layer. The variation of B,(R) with R 
shown in table 3 indicates that the region of inflow increases with R and there is a 
corresponding decrease of the region of outflow near the equator. The situation with 
increasing R is in fact similar to the situation which occurs with increasing time a t  
high Reynolds numbers in the development of the unsteady boundary layer on a 
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FIGURE 3. Variation of the radial component of velocity with radial 

distance at 0 = )n for R = 10,20, 50 and 100. 

rotating sphere which was considered by Dennis & Ingham (1979). In  that case there 
was an increase in the radial velocity component at the equator with time. In  the 
present case there is an increase of the radial velocity component with R at the 
equator; this is shown in figure 3. This increase coupled with the narrowing region of 
outflow suggests evidence of the formation of the radial jet which has been observed 
experimentally by Bowden & Lord (1963). The variation of the radial velocity com- 
ponent with radiaI distance a t  various stations of 8 is shown for the case R = 100 in 
figure 4. The results for lower values of R are somewhat similar with, of course, larger 
regions of outflow. In  every case the radial velocity component tends to zero quite 
slowly with increasing radial distance; but it does ultimately vanish at  large enough 
values of r .  

In  figure 5 the vorticity over the surface of the sphere in any plane through the axis 
of rotation is shown as a function of 8 for various values of R. The dimensionless 
vorticity 5 is related to the function 6 by 
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-0.8 

FIGURE 4. Variation of the radial component of velocity with radial 
distance at various values of 8 for R = 100. 

and may therefore be calculated using the finite number no of terms in the series (1 1). 
The main interest of figure 5 is that it indicates that no separation occurs over the 
surface of the sphere, since [ = on the surface of the sphere and hence a reversal 
of sign of 6 must take place as a point of separation is passed. Smith & Duck (1977) 
have given a theory of colliding boundary layers which should be applicable to the 
present case in which the boundary layers generated at the poles of the sphere collide 
at the equator to form a jet. I n  Smith & Duck's theory the collision of the boundary 
layers is accompanied by separation from the wall to form a re-circulating region of 
dimension R-i'C which in the present case would occur near the sphere in t'he equatorial 
region. There is no evidence of such a region developing in the range of Reynolds 
numbers considered here. Moreover, the rate of increase of the slope a t  8 = 47r of the 
curves in figure 5 with R indicates that separation is not likely to occur over a con- 
siderably larger range of R since not only must the tendency of a[/N a t  8 = to 
increase with R be reversed but i t  must eventually fall to zero and reverse its sign. 



274 S. i?. R. Dennis, S. N .  Singh and B. B. Jngham 

li!------ 

eo 
FIGURE 5. Variation of the dimensionless vorticity over the surface 

of the sphere for R = 1,10 ,20 ,50  and 100. 

The values of a[/aO a t  0 = 0 and j?r on the surface can be obtained from (56)  and 
(11). It is easily found by use of known properties of the Gegenbauer functions In(,u) 
that 

(57) 
W 

(aC/ae)6=1,8=0 = il z An(’)> 
n = l  

where Pn(p) is the ordinary Legendre polynomial. The terms in the series on the right- 
hand side of (57) alternate in sign for each case of R considered and the series converges 
rapidly for small R but becomes more slowly convergent as R increases. Owing to the 
alternating nature of the series the sum of a finite number of terms oscillates as each 
new term is added and it is therefore possible to improve the successive estimates of 
the sum obtained from m and m+ 1 terms of the series by taking the average of the 
two sums. This procedure can be extended to  the average of the averages and so on 
and an accurate estimate of the sum thus obtained. In the case of the series on the 
right of (58) the terms are all of the same sign but the coefficients P,,(O) decrease with 
n and the convergence of the series is satisfactory for all values of R < 100. Surface 
values of at O = 0,B = &T are given in table 3. The trend of the values a t  8 = 0 
as R increases could easily be consistent with the result 

(a~,”/ae)6=l,8=o 0 . 5 1 0 2 ~ t  as R -+ 00, (59) 
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I I I I I I I I 

8" 
10 20 30 40 50 60 70 80 90 

FIUURE 7. Variation of the transverse component of dimensionless skin friction over the surface 
of the sphere for R = 20, 50 and 100. -, present calculations; - - -, boundary-layer solution 
of Manohar (1967). 

obtained by Banks (1976) from boundary-layer theory. The trend of the values at  
8 = in merely confirms the trend indicated in figure 5 that a separated region is 
unlikely to appear near 0 = in for other than Reynolds numbers considerably greater 
than R = 100. The theory of Smith & Duck (1977), however, is applicable only in the 
limit R -+ 03. 

The characteristics of the flow a t  R = 100 indicate that this Reynolds number is 
not high enough for the complete characteristics of the boundary-layer theory limit 
as R -+ co to appear, but a definite tendency towards the boundary-layer results may 
be observed; this has already been noted for the torque and the value of (a[/~0)5=1,8=o. 
In  figure 6 the azimuthal and transverse dimensionless components of velocity are 
shown as functions of radial distance at  the two stations 0 = 60' and 0 = 75' a t  the 
highest value R = 100 computed. They are compared on a boundary-layer scale with 
the results of Banks (1965) obtained from boundary-layer theory and with the 
experimental results of Sawatzki (1970) obtained a t  high Reynolds number. The 
results are quite similar, bearing in mind that the thickness of the boundary layer is 
to be expected to be greater a t  R = 100 than that predicted by boundary-layer theory. 
In  figures 7 and 8 the transverse and azimuthal components of the dimensionless skin 
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0" 
FIQURE 8. Variation of the azimuthal component of dimensionless skin friction over the surface 
of the sphere for R = 20, 50 and 100. -, present calculations; - - -, boundary-layer solution of 
Manohar (1967). 

friction on the surface of the sphere are given, respectively. It is clear that these com- 
ponents have not approached close to their final limits a t  R = 100 but the general 
trend is quite consistent with the limiting solutions as R -+ m obtained from the 
boundary-layer solution of Manohar (1967), a t  least over the major portion of the 
surface measured from 0 = 0. It may not be expected that the present solutions of the 
Navier-Stokes equations will approach the solution of the boundary-layer equations 
a t  8 = &r. The boundary-layer solutions do not satisfy the correct boundary conditions 
a t  8 = &r since they arise from the solution of parabolic differential equations whose 
boundary conditions are given only a t  the pole 8 = 0. In  the present work the velocity 
components v and w satisfy the correct conditions v = 0, awl88 = 0 a t  0 = &r and this 
reflects the behaviour a t  8 = of the corresponding skin friction components in 
figures 7 and 8. 
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The numerical results given in the present section are based on the best approxi- 
mations available from the computed solutions for each value of R, i.e. those computed 
with the maximum no and the smallest value of h. Careful checks were applied to the 
solutions to test their accuracy; for example the solutions were carried out using two 
grid sizes in several cases. Thus a t  R = 50 solutions were obtained using both h = & 
and h = & when no = 5 .  They yielded the values M = 1.5550 and M = 1.5545 
respectively and other properties compared favourably. The solutions presented are 
believed to be as accurate as can be obtained by the present method. 

The computations were carried out on the CYBER 73 a t  the University of Western 
Ontario. The assistance of Mr S. H. Newman with programming and a t  all stages of 
the computations is acknowledged. The work formed part of a genera1 project sup- 
ported by grants from the Natural Sciences and Engineering Research Council of 
Canada and by NATO. 
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